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Admittance spectroscopy revisited: Single defect admittance
and displacement current
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A general approach to semiconductor device admittance spectroscopy analysis is developed, which
describes arbitrary defect distributions, and gives the geometrical capacitance limit and the
relationship between the measured conductance and capacitance. A single defect capacitance
concept is introduced that facilitates the analysis. Special attention is paid to accounting for the role
of displacement current, which was overlooked in the preceding work. An experimental verification

of the approach is given. @003 American Institute of Physic§DOI: 10.1063/1.1617363

I. INTRODUCTION narrow defect band, an) arbitrary defect distribution in
the weak screening limit. In Sec. VII we derive the relation-
Admittance spectroscopy is one of the major semiconship between the admittance and capacitance, which is sig-
ductor diagnostic techniques. It has several modificattofs, nificantly different from the Kramers—Knig transformation
of which the capacitance—voltag€{V) and admittance— and has a form specific to defect contributions. Our findings
frequency ¥ —w) are most known. Th€-V profiling tests  are experimentally verified in Sec. VIII for the case of CdTe
the spatial charge distribution. Frequency dependent admiphotovoltaics.
tanceY(w) is generally attributed to defects. Indeed, because
in response to the testing ac electric potential, defects change
t_helr occupation numbers depending on their r_elaxat_lc_)ql_ ELEMENTAL DEEECT CAPACITANCE
times, they have frequency dependent charge storing ability.
In spite of numerous applications, th& ) data are not We start with an intuitive explanation of a single defect
fully understood. The interpretation lacks basic concepts thagapacitance based on the band diagt&ig. 1) that includes
would apply to an arbitrary system/model and discriminateéa number of defect levels and band bending caused by exter-
between major features and minor details. For example, thgal bias or contact potential. In particular, it can represent a
displacement current component is commonly missed in thgchottky barriet or part of ap—n junction. Consider a de-
calculated admittance; the existing models do not contain thect level with the energf,, below the band edge. A small
geometrical capacitance limit; there is no direct way to estitesting ac voltagé) = U, exp{wt) modulates the free-carrier
mate the number of contributing defects from the data. Irconcentration in the proximity of the defect. This can be
this work we try to put the admittance spectroscopy interpreequally expressed in terms of the local quasi-Fermi level
tation on a more solid basis. We introduce a single defecinodulation, SEc=qU, whereq is the electron charge. To
impedance concept, which facilitates the data interpretatiorhegin, we assume the defect relaxation time to be shatt,
and pay special attention to taking the displacement currenk1. Then, the defect occupation will adiabatically follow
into consideration. We derive the formula for admittance thatsg,
applies to any system, contains the geometrical capacitance
limit, and establishes the domains of applicability of the ex- ~ 6f=(—df/JE) SEg=f(1—f)SEF /KT,
isting models. 1. o
Our article is organized as follows. In Sec. Il we presentWheref:{lfeXmEF_E)/kT]} tis the Fermi distribution.
an intuitive approach to a single defect capacitance. Thig—he change in occupation number induces the current,
approach is substantiated and extended to the case of defect
admittance in Sec. lll. In Sec. IV we describe how the testing j= qW =iwCyU, @
ac electric signal is screened in the system. Section V pre-

sents a general formula for defect related integral SySterWhere, in accordance with Ohm’s law, we have introduced
admittance. This formula is specified in Sec. VI for the lim- 4o ajemental quasistatiem¢<1) defect capacitance
iting cases of(a) the constant defect density of statéls)
2
_ q
Co=1(1 f)kT' 2
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N l > Ill. SINGLE DEFECT ADMITTANCE

It is straightforward to extend the above consideration to
arbitrary wr. This will be shown to result in the concept of
defect admittance, in which the quantity has both eah-
ductance and imaginary(capacitanceparts.

We start by clarifying the assumption & modulation
being the primary defect recharging source. This is justified
by noting thate-=T In(N./n), whereN, is the effective con-
centration of states in the band, and the free-carrier concen-
tration n oscillates almost independently of defect recharg-
ing. The latter independence reflects the fact that the free-
carrier relaxation timgof dielectric naturgin the external
field is, typically, much shorter than We, therefore, assume
that the free electrons adiabatically follow the testing pertur-
bation and recharge the defect states.

FIG. 1. Top: energy band diagram for defect states and related processes in Ve shall now introduce the defect admittance j/U,

the Schottky barrier. Thin dashed lines represent defect levels of differertvhere, generally speaking, the defect curjenbntains both
e et ston oo D s e e Imaginary and real parts. Following the above consider-
Fergtc.er:‘sjt(te;r?:nspatial distributions of the électric inductidm)( total (E)urrent a‘ﬁon’ the admltta}nce |mag|_nar_y part dIVIde_d iy is called
(3), and its real J,) and displacementlf) components. the defect capacitance, while its real part is the defect con-
ductance. We start with the balance equation that describes
the defect recharging rate:

X

C, is independent of defect structure and equally applies to ~ Jf
the electrons and holes being invariant with respect to the E:n(l_f )P = fpyNe. &)
changef—1—f, g——q.

Note that while the expression fd€, seemingly di-
verges withT—0, the relaxation timer simultaneously in-
creases, thereby violating the conditi@r<1 under which

Eqg. (2) holds; this is taken into account in what follows.

Here, p, and p;=p, exp(—E/KT) are the electron trapping
and detrapping probabilities (éra 1). To solve the latter
equation we substitute the standard presentation for the time
modulated quantities

Note, also, that the same result 10y follows from the dif- Nn=ny+ dng expli wt),
ferential capacitance definitiod=qdésf/dU. )
A comment is in order regarding the physical meaning of ~ f=fo+ dfoexpliwt), 4

the above result. While it has a 90° phase shift from the
applied field, the current in Eq. (1) is related to the real
charge transfer, as illustrated in Fig. 1. This should not bevhere modulation amplitudes are considered smaéi
mixed with the displacement current that occurs without reak<ngy and 6fy<fy. Linearizing Eq.(3) with respect todn,
charge transfeftaken into account below; see Ed.3)], in  and dfy and introducing the defect relaxation time
which the standard electrodynamic definifioris Jp
=dD/4mot, whereD is the electric induction. The differ- —=p;Ng+p;n, (5)
ence is clearly seen from an example of the standard flat 7
plate capacitor where the above derived “defect” current isyje|ds the equation for the defect occupation number
absent, while the displacement current determines the geo-
metrical capacitance valu@y=Jp /i wU. Sfam 1 Q;U 6)
Cy is relatively small beyond a narrow banekT near “1tiwr q
E because neither strpngly populated(1<1) nor empty_ Calculating the currenf=qdf/dt gives the defect admit-
(f<1) defects can significantly change their occupation
; : tance,
numbers in response to a small perturbation. It has a sharp
maximum for defects witlEE=E¢ (i.e., f=1/2). By way of j .
illustration, the maximum defect capacitanceCo)max y={j=CG+ieC, )
=q%4kT is 2x10 B F at room temperature, which coin- _
cides with the capacitance of a 140 A radius metal sphere.Where the defect conductanc€) and capacitanceQ) are
Note that the importance of the lengtfi/kT has long  introduced as
been recognized in connection with the electron scattering 02T Co
and capturing by charged centers in solids. However, here Gzcom, sz.
this length is related to the capacitance. A simple physical
explanation of the “elemental” capacitancé/kT is that the ~ The latter quantities are related to the defect relaxation time
defect changes its charge byq in response to the electric and energy level positiotthrough the definition fo€C,) and
potential variation~kT/q. are not sensitive to its microscopic structure.

gqU=6E=—kTéngexpiwt)/n,

()
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IV. SCREENING

The original testing field is screened due to defect re

charging(we neglect the free-carrier redistributjomhis is
described by the Poisson equation
¢V _ 47qu5f E)g(E)dE 9
T e o(E)9(E)dE, ©)
whereg(E) is the defect density of states aads the dielec-
tric constant. Substituting here Eq$) and(2) yields

U U 1 47Q%g[Er(X)]

BT P driodE 0] o
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that in the regions where defects are fully ionized and do not
change their charge states, the system admittance is of an

entirely displacement current nature, similar to the well-
known flat plate capacitor case.

As is shown in Fig. 1, the defect recharging is sup-
pressed and the current is of an entirely displacement nature,
Ji=Jp atx<Xx, . In other words, the region ai<x,, plays
the role of an effective flat plate capacitor and defect re-
charging is irrelevant. Howeved, increases withx at x
>X,, thus balancing the decay ¥y, . Physically,J, decay is
due to screening, while thk increase follows the number of
defects in the regiox—x, . As X, increases withw, the
displacement current region expands and at certain frequency

wherelL is the Screening |ength Such Screening has |0ng1)| approaches the geometrica' size of the Systg[{ny:'

been known forg(E) = constant in the static limit whete

=Ly= Jeldmg?g. The two qualitatively different regimes of

screening are that aofi) a monoenergy defect levej(E)
=N§(E—E,), and(ii) a continuous density of states.
For case(i) we integrate Eq(10) from x,— & to X,
+ 68, 6—0, where the poink,, is defined byEr(X)=E,, (see
Fig. 1). We take into account thas(E—E,)|dE,|= o(x
—X,)|dx| and that the static electric fieldlE,/qdx
=4mgNx,/e. This gives a stepwise change

o=

1+iwr’ (11)

in the testing field€= —dU/dx. In the static limitw 7<<1 the
field is completely screened at the boundare=k,) be-

whenE,, =Eg(l). At o>, the system is characterized by
its geometrical capacitance per unit a@g= e/4l.

Based on Eq(13) one can calculate the integral admit-
tance asY=J,/U;. The shape ofJ(x) in the integrand of
Eq. (13) must be preliminary found from E¢10). However,
given the latter shape the admittance can be calculated more
easily through the displacement current. Indeed, becduse
+Jp=constant and,=0 atx<x,, Eq.(13) gives the ad-
mittance

1 9D(x,— )

=420, at

(14

ls—0"

the field penetrates infinitely deep and has the opposite-phad@ & narrow defect band whe(x) changes abruptly, as, for

(capacitive component.

For case(ii) of continuousg(E) we use the standard
representationr= vy exp®/kT) and introduce the demarca-

tion energy

o) "

separating “fast” E<E,) and “slow” (E>E,) states. The
corresponding spatial separation occurxgt(see Fig. 1

E,=KkTIn

example, described in E@ll). D(x,) can be expressed by

(15

D(X,)X,+ fl D(x)dx=e€eU;.

10}

Equations(14) and (15) together with Eq.(10) solve the
problem of finding the admittance corresponding to a given
defect density of states.

Note that the lengthx, remains a parameter in the

The slow states give almost no contribution to screeningpresent consideration. Its value is determined by the static
while the fast ones are described in the static limit; a narrowsjectric field distribution in the systerfthe barrier shape in

transitional bandE,*+KkT is immaterial’ Using the static

Fig. 1), which in turn depends on the defect density of states

screening length we conclude that the field penetrates infiyng external voltage. To calculate, one has to solve the
nitely deep wher,>Xx,, and is significantly screened when giatic Eq.(10) for a given defect density of states and Fermi

Lo<X,-

V. INTEGRAL ADMITTANCE

The integral admittanc¥ = J, /U, is defined through the
integral current §,) and total potential dropy,) across the

level position. In applications, the inverse problem of calcu-
lating the defect density of states based on the impedance
measurements is of major interest. This requires developing
a nontrivial numerical algorithm where the frequency-
dependent impedance data input is used to solve @4g.

(15), and(10), simultaneously, for the electric field distribu-

system. In calculating, we note that the defect recharging tion and defect density of states.

currentJ, is due to real charge transfer. Taking into account

also the displacement curredg, the total current per unit
areaJ;=J,+Jp can be presented in the form

dD(X)
Aot

Jt=f dXg EE(X) JU(X)Y[EE(X) ]+ (13

Naturally, J; is independent ok, which can be verified by
usingD = — edU/dx and Eq.(10). This means, in particular,

We emphasize the displacement current contribution. In
particular, C;=(Y,/iw) turns out to be different from the
differential capacitance C=dQ/dU. Indeed, dQ/dU;
=J,dt/dU,=J, /iU, lacks the displacement current contri-
bution as compared t€,=J;/iwU,. Experimentally,C is
found throughJ; vs U; measurements, which includg .

Surprisingly, thel contribution has been overlooked in
the available literature, most of which was based on the
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dQ/dU;, definition (see the reviews in Refs. 1-3 angd Bhe mqT.

w
interpretation in Refs. 9—11, while utilizing thg /U, ap- YZWU—X@)ZQ(EU,)
proach, does not includ#, either. ¢
| Gyt JEw dErg(E )w (19)
9|2 Eeon o |EER] |

VI. SPECIFIC CASES Here,&(Er)=dEg/qdxis the static electric field at the point

In this section we consider three different cases wher&(Er) Where the Fermi level measured from the band edge is

closed form results can be derived. Er. ) ]
For practical purposes, it follows from the above that the

A. Constant density of states uniform field (weak screeningapproximation holds when

We start with the case a@f(E) = constant, which in Ref. the difference between measured capacitance and its high-
4 was analyzed based on tH€/d U, definition. Substituting ~frequency valueC, (the frequency-dependent part of capaci-
in Eq. (15) D(x)=D(x,,)exf — (x—x,)/L] to find D(x,,) and tance is relatively small. In particular, a widely used model
using Eq.(14) we get of additive geometrical and defect-related capacitances fails
e beyond the weak screening limit.

Y

= . (16)
4m{x,+L—-Lexd(x,~/L} VIl. CONDUCTANCE—CAPACITANCE RELATIONSHIP
For C=3(Y/w) the result has the intuitively clear flat-plate One direct consequence of E@.8) is the relationship

capacitor form. The effective interplate distance is given by, .+ can the reduced conductance and capacitance

the field penetration depth, which Isin the case of weak
screenind —x,<<L, or x,+L when the screening is strong. G dC

While it has a similar general shape, our result is quite dif- ¢ _Wd(ln )’

ferent from that in Ref. 4. In particular, none of the above hich ol h le of a K Vi t ¢ i
cited sources, including Ref. 4, gives the geometrical capaciw Ich piays ne role ol a Kramers—rfig transformation.
tance limit. Based on the above Eg8), (10), (13) one can prove Eq.

(19) to hold beyond the weak screening case.
Because Eq(19) is specific to the defect contribution it
can be used to verify the nature of measured admittance as is
B. Narrow band illustrated below. Note, however, that the assumption of

The alternative case of a narrow defect band can be agmoothg(E) underlying Eq.(19) fails for the case of a nar-
proximated by the above discussg(E)=NS(E—E,). Us-  row defect bandof the width <kT).
ing Egs.(11), (15), and(14) yields

w?7(l —Xw)+iw[(Xw/|)+(wT)2]
Y=Cqy (X, 12+ (w7)? : 17 As an illustration of our approach, consider the data on
. ) ) ) . _thin-film p—n junctions made of 0.3:sm-thick CdS ¢ type
This is consistent with the solution of.a similar problem N and 4um-thick CdTe ¢ type) deposited on commercial
Refs. 2 and 12 far from the geometrical capacitance limity sparent conductive oxide coated glass. A SRS 830 dual-
Our result correctly predicts the geometrical limit in the cas hase digital lock-in amplifier was used in conjunction with

of high frequencies where the last term in Eg7) domi- home-built self-calibrating signal-conditioning device. The
nates. Note that a narrow defect band appears to be the On&citation signal amplitude was about 3.5 mV, frequency
case where the result can be equally calculated based QHnge fromMw—~0.1 10 w-..~10° kHz

min . max .

eitherJ, or Jp current, since they are spatially separated. Shown in Fig. 2 is the measured capacitance for dc bias.

Defect-related features fall in the domain below 1000 kHz
(corresponds to lm=~9 in Fig. 2 where noticeable fre-
C. Weak screening guency dependence is seen. This points at defects with the
For arbitraryg(E) the problem can be solved analyti- chara_cterlsnc relaxat|on_t|mes ranging from 2o ;OO s.In
the high-frequency region the measured capacitance corre-

cglly n the_weak screening limit Whe@(x)_: D+ 4D(x) sponds to the flat-plate capacitor with the interplate distance
with 6D <D = constant. We approximate =D (x—I)/e on |4 ,m consistent with the device thickness.

the_right—hand side of the_Poisson E@O) to calculatesD As is illustrated in Fig. 2, our data confirm E¢L9)
=D/Jdx(x—1)/L? and findD from Eq.(15). Close toE,, we  through almost the entire frequency region, which we con-
represenEg=E ,+q&(E,)(X—X,,) and use the standard ap- sider strong evidence that the measured admittance features

(19

VIII. EXPERIMENT

proximation are due to defects(Minor irregularities in the curve
aT dC/d In w result from numerical differentiationStrong de-
1+in=®(x—xw)+ [ W&(x—xw), viation of dC/d In w from the data in the low-frequency re-
@ gion is attributed to a narrow defect bandeat0.56 eV, as
where®(x) and §(x) are the step and delta functions. As- is described by Eq(17). The integral number of active de-
suming smootlg(E) we finally obtain fects can be estimated p€(w) — C4]/Co~3x10° cm™ 2.
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A —o— (G-Gy)lw scribes arbitrary defect distributions, contains the geometri-
n*dC/d(Inw) cal capacitance limit, and gives the relationship between
A —a— C ] conductance and capacitance that can be used to test the
128 defect nature of measured admittance. A single defect capaci-
tance concept is introduced that facilitates the analysis. Some
experimental verification of our findings is given. From the
practical standpoint, our consideration introduces a diagnos-
tic toolkit that enables one to verify the defect nature of the
d24 measured capacitance and calculate the number of active de-
fects.

Qo [=]
FS o
1 1
/
C,nF

(G-G,)w and =*dC/d(In®), nF
o

o
o
1
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